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Abstract—When people are exhausted both physically and 

mentally from overexertion, they experience fatigue. Fatigue 

can lead to a decrease in motivation and vigilance which may 

result in certain accidents or injuries. It is crucial to monitor 

fatigue in workplace for safety reasons and well-being of the 

workers. In this paper, Electroencephalogram (EEG)-based 

evaluation of mental fatigue is investigated using the state-of-

the-art machine learning algorithms. An experiment lasted 

around 2 hours and 30 minutes was designed and carried out 

to induce four levels of fatigue and collect EEG data from 

seven subjects. The results show that for subject-dependent 4-

level fatigue recognition, the best average accuracy of 93.45% 

was achieved by using 6 statistical features with a linear SVM 

classifier. With subject-independent approach, the best 

average accuracy of 39.80% for 4 levels was achieved by using 

fractal dimension, 6 statistical features and a linear 

discriminant analysis classifier. The EEG-based fatigue 

recognition has the potential to be used in workplace such as 

cranes to monitor the fatigue of operators who are often 

subjected to long working hours with heavy workloads. 
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I.  INTRODUCTION 

Fatigue is common in daily life and it could be a hazard 
in workplace which may result in accidents and injuries due 
to low vigilance and efficiency. For example, in the 
construction industry, the workers are often subjected to long 
working hours with heavy workloads. It is claimed in [1, 2] 
that fatigue could be one of the reasons that causes human 
errors. It is also shown in [3] that through seven-hour 
driving, the driver experienced fatigue and gradually the 
performance was decreased. Thus, it is important to 
evaluate/monitor fatigue level of the workers in workplace or 
the drivers who must continuously drive for a relatively long 
time. 

Usually questionnaires [4, 5], cognitive tests [6, 7], or 
bio-signals [8] are used to evaluate fatigue. Compared to 
questionnaires and cognitive tests which interrupt the 
ongoing work or only are given at the end of tasks, bio-
signals based fatigue recognition can provide continuous 
monitoring and does not have to interfere with the subjects’ 
primary tasks.  

In this paper, we design and implement an experiment to 
induce 4 levels of fatigue and propose both subject-

dependent and subject-independent algorithms using the 
state-of-the-art machine learning techniques. 

The paper is constructed as follows. In Section II, the 
definition of fatigue, experiment of fatigue evocation, and 
the state-of-the-art EEG-based fatigue recognition algorithms 
are reviewed. In Section III, the experiment design is 
introduced. In Section IV, the results of proposed subject-
dependent and subject-independent data analyses are 
presented. Section V concludes the paper. 

II. RELATED WORK 

A. Fatigue 

Fatigue refers to an extreme way of tiredness that could 
result from overexerting oneself mentally, physically or both 
[1]. It could cause a loss of efficiency with a lack of effort 
[2]. It may also lead to a decrease in motivation and 
vigilance in a being, which results in a higher probability of 
accidents or injuries. 

Fatigue is usually measured by survey questionnaires [3, 
4]. The subjects are given a series of questions regarding 
how they feel. For example, [5] validates the use of  the 
Checklist Individual Strength questionnaire (CIS) to measure 
fatigue among working people. A checklist is included in 
this questionnaire and the subjects need to rate the degree to 
which they agree to the questions such as “I feel tired”, “I 
feel very active”. Besides questionnaires, a cognitive test 
such as Psycho-motor Vigilance Test (PVT) is used in 
research to evaluate fatigue level. In the PVT test, the 
subjects react to the visual stimuli and the reaction time is 
recorded as a measurement of fatigue [6, 7].  

Besides questionnaires and cognitive tests, in recent 
studies, several other methods are also used as the 
measurements of fatigue such as Electroencephalogram 
(EEG), Skin Conductance Response (SCR), heart rate 
monitoring, and oxygen intake [8]. The EEG-based 
recognition outperforms the others as it has high temporal 
resolution. Additionally, in [9], it is found that emotions also 
correlate to fatigue, and [10] shows that the EEG-based brain 
state recognition can identify states such as emotion and 
workload with good accuracy. Thus, in this paper EEG-
based fatigue recognition is studied. 



B. Review on Experiments 

There are different ways to induce fatigue under the 
experimental settings, namely, the trail making test, mirror 
drawing test and n-back tests. Such experiments usually last 
for a duration of 2 hours continuously to guarantee the 
elicitation of fatigue [11]. The trail making test consists of 
circles numbering, for example, from 1-25, and the numbers 
located at random positions on the screen [12]. The subjects 
need to click the numbers in sequence as fast as possible. To 
get fatigue, the subjects have to do the test at least for 30 
minutes. The mirror drawing test requires subjects to draw 
and to trace pictures by looking at the inverted image of the 
pictures through a small glass mirror [13]. To get fatigue, a 
certain period for at least 30 minutes is required. Lastly, the 
n-back test requires subjects to use their short-term memory. 
They need to memorize the letters flashed on the screen and 
indicate by pressing a certain key when the current letter 
matches the one from n steps earlier in the sequence [14, 15]. 
The difficulty level of the n-back test can be changed by 
increasing the number of “n” defined in the test such as 1-
back test and 2-back test. It can also include two senses 
concurrently, such as visual and audio senses. For example, 
besides letters flash on the screen, the reading of alphabets is 
given at the same time, and the subjects need to react to both 
stimuli. In this paper, the n-back test is selected since it could 
be used to invoke different levels of fatigue by various 
difficulty levels.  

C. EEG-base Fatigue Recognition 

The correlation between fatigue and EEG has been 
studied in the literatures. Jap et al. [16] recruited 52 subjects 
and recorded their EEG signals during a monotonous driving 
session. They examined the spectral components of EEG and 
established that the ratio of slow waves (e.g., α, θ waves) to 
fast waves (e.g., β waves) would increase when the subject 
was experiencing fatigue. Chen et al. [17] carried out an 
experiment on 12 subjects to induce fatigue by a 2-hour 
mental arithmetic task without any break. They investigated 
the spectral coherence among 28 electrode pairs within four 
frequency bands (delta, theta, alpha, and beta), and proved 
that mental fatigue was accompanied by increased EEG 
coherence. Cao et al. [18] investigated the fatigue caused by 
using a steady state visually evoked potential (SSVEP)-based 
brain-computer interface, and reported consistent 
observations of significant increases in α and (α+θ)/β ratio, 
as well as the decreases in θ/α ratio when the subjects were 
suffering fatigue. Gharagozlou et al. [19] proposed to induce 
fatigue by an overnight sleep-deprived stimulated driving 
task on 12 subjects, and demonstrated that a significant 
increase in the absolute α power indicated the onset of 
fatigue. Liu et al. [20] showed that approximate entropy and 
Kolmogorov complexity of the EEG signal are indicative of 
different fatigue states, and proposed to classify the fatigue 
state with a combination of kernel principal component 
analysis and Hidden Markov Model using the said features. 
They reported the best accuracy 84.00% for differentiating 
fatigue and nonfatigue states. Trejo et al. [21] justified the 
increase of α and θ spectral power when fatigue kicks in, and 
classified the fatigue-nonfatigue states with a kernel partial 

least squares regression classifier, reporting the mean 
recognition accuracy of 98.80%. Mu et al. [22] used fuzzy 
entropy as features and support vector machine as classifier, 
and attain the accuracy 85.00% for binary fatigue level 
classification. 

In this paper, we propose methods that are different from 
the existing studies [20-22] in two folds. Firstly, we attempt 
to recognize up to four fatigue levels comparing to the 
existing works which mainly focus on binary fatigue level 
differentiation. Secondly, we have taken both subject-
dependent and subject-independent approaches while the 
existing studies mainly evaluate the classification 
performance on a subject-dependent basis. 

III. EXPERIMENT DESIGN 

An experiment was designed and carried out to elicit 
fatigue. 

A. Subjects 

A total of seven males with an average age of 24 have 
participated in this experiment. None of them has any history 
of mental illness. All the subjects have been told not to have 
any caffeine or energy drinks prior to the experiment. In 
addition, the experiment has been always conducted after 
lunch, in a dimly lit room with minimal external noise. 

B. Procedure  

The entire experiment lasted around 2 hours and 30 
minutes. After the subjects reached the lab, they were briefly 
explained about the experiment, and the EEG device was 
mounted on their head. Then, the two-hour task was initiated, 
and it included 30 minutes of relaxation (Phase 1), followed 
by a 1.5-hour continuous n-back test of difficult level 1, 2 
and 3 (Phase 2, 3 and 4) with a 10-minute break after the 1- 
hour mark. In phase 1, the subjects were required to listen to 
soothing, relaxing music without any sort of distraction, 
which may include noise or even excessive light. In phase 2-
4, the n-back test was employed where a sequence of letters 
were given to the subjects. The difficulty level for the tests 
increases with every 30-minute session, namely the 1-back 
test, 2-back test and the dual 2-back test. For dual 2-back 
test, the subjects needed to react to not only visual stimuli 
(letters flashed on the screen) but also audio stimuli (reading 
of alphabets) in the 2-back manner.  

The EEG during each phase was recorded. After every 
phase, a CIS questionnaire was given to the subjects for them 
to rate their level of fatigue. It contains 20 questions 
regarding the subjective feeling of fatigue, concentration, 
motivation, and physical activity. A final score can be 
calculated according to the answers to the questionnaire. The 
higher the points from the questionnaire, the more fatigue the 
subject experienced. 

C. EEG Device 

A 14-channel Emotiv device [23] was used to record the 
EEG data during the experiment. The channels of Emotiv are 
AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and 
AF4, locating at frontal lobe, temporal lobe, parietal lobe, 
and occipital lobe. 



IV. RESULTS AND ANALYSES 

A. CIS Questionniare  

From the results of CIS questionnaire shown in Table I, 
the fatigue level increased with the difficulty level of n-back 
test deepened.  

TABLE I.  VAS QUESTIONNIARE RESULTS 

Subject # 
Exp. 

Phase  

CIS 

Score 
Subject # 

Exp. 

Phase  

CIS 

Score 

1 

1 37 
4 

3 88 

2 56 4 91 

3 106 

5 

1 37 

4 126 2 56 

2 

1 67 3 70 

2 86 4 99 

3 91 

6 

1 60 

4 109 2 85 

3 

1 71 3 94 

2 81 4 108 

3 83 

7 

1 70 

4 89 2 78 

4 
1 67 3 81 

2 78 4 85 

B. EEG-based Fatigue Recognition  

Then the CIS score was used as ground truth to label the 
EEG data to validate the fatigue recognition algorithm. As a 
result, EEG data labeled with 4 different levels of fatigue 
were obtained. Based on the labeled EEG data, we evaluated 
the recognition accuracy for 4 fatigue levels. We adopted and 
compared several state-of-the-art EEG features (Statistics 
[24-26], higher order crossing [25, 27], fractal dimension 
[24, 25], hjorth [28, 29], signal energy [30], and spectral 
power [31-33]) and different classifiers (logistic regression, 
linear discriminant analysis, 1-nearest neighbor, linear 
support vector machine, and naïve Bayes), and carried out 
both subject-dependent recognition and subject-independent 
recognition on a per-subject basis. For subject-dependent 
recognition, we applied five-fold cross-validation to each 
subject as was used in [20, 21], where four folds were used 
as training data and the remaining fold as test data. Four-
second window was used for the features extraction. The 
recognition accuracy averaged across all subjects is 
presented in Table II. The best average recognition accuracy, 
93.45%, was attained by using 6 statistical features with a 
linear SVM classifier. Naïve Bayes classifier yielded below-
par recognition accuracy irrespective of the feature used. SE 
gave the worst performance except when used with 1-NN 
classifier. Comparing to existing studies [20-22], our 
methods can recognize four levels of fatigue while 
maintaining comparable accuracy to binary fatigue level 
differentiation. Though subject-dependent fatigue 
recognition could potentially achieve satisfactory accuracy, 
the performance was at the cost of prolonged training time – 
2 hours’ fatigue induction. In real applications, it is not 
practicable to spend so much time calibrating the algorithm. 
Subject-independent fatigue recognition could be adopted to 
eliminate the wearying fatigue induction for the subject-of-
interest, by using the labeled EEG data of other subjects to 

train the classifier. We stress that such research has been 
lacking in existing studies, and it is crucial to the real 
application. For subject-independent recognition, we adopted 
the leave-one-subject-out cross-validation scheme, where we 
reserved the data from one subject as the test data and pooled 
together the data from all other subjects as training data, until 
each subject has served as the test subject once. The 
recognition accuracy averaged across all subjects presented 
in Table III. A drastic reduction in recognition accuracy was 
observed when compared to subject-dependent fatigue 
recognition presented in Table II. The best accuracy, 
39.80%, was attained by fractal dimension + 6 statistical 
features and a linear discriminant analysis classifier. The 
same feature also performed the best when used with a 
logistic regression classifier. Linear SVM, which was found 
to be the best-performing classifier in subject-dependent 
application, yielded below-par performance in subject-
independent case. One-nearest neighbor and naïve Bayes 
produced similar recognition results, performing at mediocre 
level. It is worth highlighting that the subject-independent 
fatigue recognition is more applicable in real application 
scenario as it does not require the prolonged, tedious fatigue 
evocation before the subject can be monitored by such 
system. Considering its application values, in the future, we 
will focus on how to further improve the accuracy of subject-
independent fatigue recognition. 

TABLE II.  SUBJECT-DEPENDENT RECOGNITION ACCURACY (%)  

Feature Classifier 

LR LDA 1-NN LinSVM NB 

6 STAT  88.80 88.80 74.04 93.45 47.33 

36 HOC  72.02 70.11 41.65 66.31 50.89 

FD+6STAT+36HOC  81.61 88.02 48.59 88.42 54.58 

FD+6STAT  88.60 89.01 72.49 93.24 47.72 

HJORTH  74.51 73.74 69.79 67.93 37.79 

SE  58.61 43.48 83.87 37.75 31.08 

POWER  67.37 56.51 84.59 56.19 33.38 

TABLE III.  SUBJECT-INDEPENDENT RECOGNITION ACCURACY (%)  

Feature Classifier 

LR LDA 1-NN LinSVM NB 

6 STAT  38.59 39.59 31.67 28.01 26.74 

36 HOC  33.73 33.97 28.74 26.73 34.37 

FD+6STAT+36HOC  35.37 38.91 31.40 29.83 32.25 

FD+6STAT  39.07 39.80 31.93 25.23 26.65 

HJORTH  32.80 33.25 32.35 23.39 24.72 

SE  27.73 27.56 27.87 25.09 24.66 

POWER  29.00 29.62 35.64 25.76 25.17 

V. CONCLUSION 

In this paper, we designed and carried out an experiment 
to induce four levels of fatigue on seven subjects and 
collected their EEG data while the fatigue induction was 
ongoing. We proposed methods to recognize four levels of 
fatigue, with the average accuracy of 93.45% achieved on a 
subject-dependent basis. The results are more promising in 
comparison to other works which reported accuracy for 2 
classes fatigue state differentiation only. We also took the 
subject-independent approach to recognizing the 4 fatigue 
levels, yielding the average accuracy of 39.80%. While the 



subject-dependent approach could achieve much higher 
recognition accuracy, such benefit came at the cost of 
prolonged training time (2 hours) which is not practicable in 
real application scenarios. The subject-independent approach 
makes more practical sense but has been lacking sufficient 
research thus far and it needs more data collected from 
different subjects to improve accuracy. In the future, we will 
focus on how to further improve the accuracy of subject-
independent fatigue recognition. 
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